Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Pegah Varamini

Pegah Varamini

University of Sydney, Australia

Title: : Pharmacological activity of an advanced formulation of curcumin for targeted therapy of triple negative breast cancer

Biography

Biography: Pegah Varamini

Abstract

Breast cancer is the most common malignancy and the second leading cause of cancer-related death among Australian women despite existing progress in the development of novel therapeutic strategies. Triple-negative breast cancer (TNBC) accounting for 10-17% of all breast carcinomas, is an aggressive histological subtype. It represents an important clinical challenge because these cancers do not respond to the available targeted agents. Thus, there is an urgent demand for specific therapies that target other receptors that are overexpressed in TNBCs. We have designed and synthesized a novel drug delivery system, which targets curcumin to the breast cancer cells through a ligand of luteinizing hormone-releasing hormone (LHRH) receptors. LHRH receptors are overexpressed in breast cancer cells including MBC and TNBC cells while they are not expressed detectably in most visceral organs. We have taken advantage of this differential receptor expression by attaching a new derivative of the LHRH peptide (as a targeting moiety) to the outer surface of novel polymer nanoparticles. These nanoparticles encapsulate curcumin, a non-toxic plant extract that has recently attracted much attention in medicine due to its remarkable therapeutical actions. It is called the "next generation multipurpose drug" and is the active constituent of the Indian spice turmeric. However, it suffers from a very poor metabolic stability and bioavailabilty due to low water solubility. We have used an advanced formulation strategy to overcome hurdles to make it effectively used as a medication and also target it specifically to the TNBC cells via LHRH receptors.